Sicurezza delle reti informatiche con il Pentest e il Vulnerability assessment Giacomo Lanzi

Computer network security: PT vs. VA

The security of computer networks is of vital importance for a company. With technologies increasingly relying on remote services, it is good to ensure that security is guaranteed. To do this, two tools are used: Vulnerability Assessment and Penetration Test. But what is the difference between them? The answer to this question is not as obvious as one might think.

The short answer is: a Pentest (PT) may be a form of vulnerability assessment (VA), but a vulnerability assessment is definitely not a Pentest. Let’s try to better understand how they work and their purposes.

Verification of the security of computer networks: Vulnerability Assessment

A vulnerability assessment is the process of running automated tools against defined IP addresses to identify vulnerabilities in the environment in which one operates. Vulnerabilities typically include unprotected or misconfigured systems. The tools used to perform vulnerability scans are specific software that automates the process. Obviously these software are practically useless without an operator who knows how to use them correctly.

These tools provide an easy way to scan for vulnerabilities and there are both open source and proprietary ones. The main advantage of the open-source ones is that, with great probability, they are the same ones used by hackers, they are unlikely to pay an expensive subscription, when they can download open source applications for free.

In practice, a VA allows you to:

identify and classify security holes in the computer network
understand the cyber threats to which the company is exposed
recommend corrective measures to eliminate the weaknesses found

The purpose of a Vulnerability Assessment is to identify known vulnerabilities so that they can be corrected. Scans are typically done at least quarterly, although many experts recommend monthly scans.

How to perform a VA

Il processo di esecuzione si divide in due fasi e non prevede lo sfruttamento delle debolezze riscontrate. Questo ulteriore passaggio e’ invece previsto nel Penetration Test.

Fase 1: prima analisi
durante questa fase vengono raccolte tutte le informazioni disponibili sull’obiettivo per determinare quali potrebbero essere i punti deboli e le falle nel sistema di sicurezza delle reti informatiche
Fase 2: seconda analisi
in questa fase, tramite l’uso delle informazioni ricavate, vengono messe alla prova i possibili problemi. In questa fase le vulnerabilita’ sono testate per capire se siano effettivi problemi come supposto precedentemente.

Data l’incredibile velocita’ in cui le tecnologie e le tecniche informatiche si evolvono, e’ possibile che un sistema si mostri sicuro questo mese, ma abbia invece delle criticita’ da risolvere il mese successivo. Per questo e’ consigliato ripetere regolarmente e con frequenza i controlli di sicurezza sulle reti informatiche aziendali.

 

The execution process is divided into two phases and does not involve exploiting the weaknesses found. This further step is instead foreseen in the Penetration Test.

Phase 1: first analysis
during this phase, all the information available on the objective is collected to determine what could be the weak points and gaps in the security system of computer networks
Phase 2: second analysis
in this phase, through the use of the information obtained, possible problems are put to the test. In this phase the vulnerabilities are tested to understand if they are actual problems as previously assumed.
Given the incredible speed at which computer technologies and techniques evolve, it is possible that a system will prove secure this month, but instead have some problems to solve the following month. For this reason, it is advisable to repeat the security checks on company computer networks regularly and frequently.

Results

At the end of the process of verifying the vulnerabilities of a system, the final reports contain all the results collected. Typically these enclose all relevant information, including:

the list of vulnerabilities found
an in-depth description of the vulnerabilities
countermeasures to be adopted to reduce risks

Verification of vulnerabilities is a fundamental procedure for the company, but it does not guarantee the security of computer networks. For the correct maintenance of the security of your systems, it is also essential to use another tool: the Penetration Test.

Penetration test

The Pentest, or penetration test, is aimed at verifying how the vulnerabilities of a system can be exploited to gain access and move within it. One of the initial steps performed by a pentester is scanning the network to find IP addresses, device type, operating systems and possible system vulnerabilities. But unlike the Vulnerability Assessment, the Pentest doesn’t stop there.

Of crucial importance for a tester is the exploit of identified vulnerabilities in order to gain control of the network or to take possession of sensitive data. The tester uses configurable automated tools to perform exploits against computer network systems. The peculiar part, however, occurs when the tester performs manual exploit attempts, just like a hacker would.

Classification

Penetration tests are classified in two ways: gray box or black box.

Gray box tests are performed with full knowledge of the target company’s IT department. Information is shared with the tester, such as network diagrams, IP addresses, and system configurations. The approach of this method is the verification of the safety of the present technology.

A black box test, on the other hand, represents more properly the action of a hacker who tries to gain unauthorized access to a system. The IT department knows nothing about the test being performed and the tester is not provided with information about the target environment. The black box method evaluates both the underlying technology and the people and processes involved to identify and block an attack as it would happen in the real world.

Phases of the Pentest

Phase 1: Analysis
The system is analyzed, studying its strengths and weaknesses. All preliminary information is collected. This, of course, does not happen if it is a gray box pentest.
Phase 2: Scan
The entire infrastructure is scanned to find the weak points to focus on.
Phase 3: Planning
Thanks to the information gathered, we plan with which tools and techniques to use to hit the system. The possibilities are many and they are both purely technological and social engineering techniques.
Phase 4: actual attack
In this phase the testers try to exploit the identified vulnerabilities to gain full control of the targeted system.

Report

At the end of the Penetration Test, a report is also compiled that details the entire process carried out and includes:

evaluation of the impact of a real attack on the company
solutions to solve problems and secure computer network systems

A Penetration Test that is not successful is a sign that the system under examination is safe * and the data inside it does not risk anything. However, this does not mean that the company will be protected forever from any attack: precisely because the strategies of hackers constantly evolve, it is important to carry out Penetration Tests regularly.

(*) It should be noted, however, that although a good Penetration Test follows guidelines or structuring methodologies (i.e. OWASP) it remains a test with a strong subjective impact of the Penetration Tester and of the team that performed it, therefore it cannot be excluded that by repeating the tests carried out by a different group of Penetration Tester we have no new results. Furthermore, as is well known to our readers, in the field of Cyber ​​Security the concept of “safe” in absolute terms is inadequate.

How to do

Although Vulnerability Assessments and Penetration Tests have different objectives, both should be performed regularly to verify the overall security of the information system.

Vulnerability assessment should be done often to identify and fix known vulnerabilities. The Pentest should be carried out at least once a year and certainly after significant changes in the IT environment, to identify possible exploitable vulnerabilities that may allow unauthorized access to the system. Both of the services described in this article are available through SOD, even on a recursive basis to ensure test effectiveness. contact us to find out more.

[btnsx id=”2931″]

Useful links:

Security: pentest and verification of vulnerabilities

Vulnerability Assessment & Penetration Test

 

 

 

Share


RSS

More Articles…

Categories …

Tags

RSS darkreading

RSS Full Disclosure

  • [SYSS-2024-030]: C-MOR Video Surveillance - OS Command Injection (CWE-78) September 6, 2024
    Posted by Matthias Deeg via Fulldisclosure on Sep 05Advisory ID: SYSS-2024-030 Product: C-MOR Video Surveillance Manufacturer: za-internet GmbH Affected Version(s): 5.2401, 6.00PL01 Tested Version(s): 5.2401, 6.00PL01 Vulnerability Type: OS Command Injection (CWE-78) Risk Level: High Solution Status: Open Manufacturer Notification: 2024-04-05 Solution Date: - Public Disclosure: 2024-09-04...
  • [SYSS-2024-029]: C-MOR Video Surveillance - Dependency on Vulnerable Third-Party Component (CWE-1395) September 6, 2024
    Posted by Matthias Deeg via Fulldisclosure on Sep 05Advisory ID: SYSS-2024-029 Product: C-MOR Video Surveillance Manufacturer: za-internet GmbH Affected Version(s): 5.2401 Tested Version(s): 5.2401 Vulnerability Type: Dependency on Vulnerable Third-Party Component (CWE-1395) Use of Unmaintained Third Party Components (CWE-1104) Risk Level: High Solution Status: Fixed...
  • [SYSS-2024-028]: C-MOR Video Surveillance - Cleartext Storage of Sensitive Information (CWE-312) September 6, 2024
    Posted by Matthias Deeg via Fulldisclosure on Sep 05Advisory ID: SYSS-2024-028 Product: C-MOR Video Surveillance Manufacturer: za-internet GmbH Affected Version(s): 5.2401, 6.00PL01 Tested Version(s): 5.2401, 6.00PL01 Vulnerability Type: Cleartext Storage of Sensitive Information (CWE-312) Risk Level: Medium Solution Status: Open Manufacturer Notification: 2024-04-05 Solution Date: - Public...
  • [SYSS-2024-027]: C-MOR Video Surveillance - Improper Privilege Management (CWE-269) September 6, 2024
    Posted by Matthias Deeg via Fulldisclosure on Sep 05Advisory ID: SYSS-2024-027 Product: C-MOR Video Surveillance Manufacturer: za-internet GmbH Affected Version(s): 5.2401, 6.00PL01 Tested Version(s): 5.2401, 6.00PL01 Vulnerability Type: Improper Privilege Management (CWE-269) Risk Level: High Solution Status: Open Manufacturer Notification: 2024-04-05 Solution Date: - Public Disclosure:...
  • [SYSS-2024-026]: C-MOR Video Surveillance - Unrestricted Upload of File with Dangerous Type (CWE-434) September 6, 2024
    Posted by Matthias Deeg via Fulldisclosure on Sep 05Advisory ID: SYSS-2024-026 Product: C-MOR Video Surveillance Manufacturer: za-internet GmbH Affected Version(s): 5.2401 Tested Version(s): 5.2401 Vulnerability Type: Unrestricted Upload of File with Dangerous Type (CWE-434) Risk Level: High Solution Status: Fixed Manufacturer Notification: 2024-04-05 Solution Date: 2024-07-31 Public Disclosure:...
  • [SYSS-2024-025]: C-MOR Video Surveillance - Relative Path Traversal (CWE-23) September 6, 2024
    Posted by Matthias Deeg via Fulldisclosure on Sep 05Advisory ID: SYSS-2024-025 Product: C-MOR Video Surveillance Manufacturer: za-internet GmbH Affected Version(s): 5.2401 Tested Version(s): 5.2401 Vulnerability Type: Relative Path Traversal (CWE-23) Risk Level: High Solution Status: Fixed Manufacturer Notification: 2024-04-05 Solution Date: 2024-07-31 Public Disclosure: 2024-09-04 CVE...
  • Backdoor.Win32.Symmi.qua / Remote Stack Buffer Overflow (SEH) September 6, 2024
    Posted by malvuln on Sep 05Discovery / credits: Malvuln (John Page aka hyp3rlinx) (c) 2024 Original source: https://malvuln.com/advisory/6e81618678ddfee69342486f6b5ee780.txt Contact: malvuln13 () gmail com Media: x.com/malvuln Threat: Backdoor.Win32.Symmi.qua Vulnerability: Remote Stack Buffer Overflow (SEH) Description: The malware listens on two random high TCP ports, when connecting (ncat) one port will return a single character like "♣" […]
  • HackTool.Win32.Freezer.br (WinSpy) / Insecure Credential Storage September 6, 2024
    Posted by malvuln on Sep 05Discovery / credits: Malvuln (John Page aka hyp3rlinx) (c) 2024 Original source: https://malvuln.com/advisory/2992129c565e025ebcb0bb6f80c77812.txt Contact: malvuln13 () gmail com Media: x.com/malvuln Threat: HackTool.Win32.Freezer.br (WinSpy) Vulnerability: Insecure Credential Storage Description: The malware listens on TCP ports 443, 80 and provides a web interface for remote access to victim information like screenshots etc.The […]
  • Backdoor.Win32.Optix.02.b / Weak Hardcoded Credentials September 6, 2024
    Posted by malvuln on Sep 05Discovery / credits: Malvuln (John Page aka hyp3rlinx) (c) 2024 Original source: https://malvuln.com/advisory/706ddc06ebbdde43e4e97de4d5af3b19.txt Contact: malvuln13 () gmail com Media: x.com/malvuln Threat: Backdoor.Win32.Optix.02.b Vulnerability: Weak Hardcoded Credentials Description: Optix listens on TCP port 5151 and is packed with ASPack (2.11d). Unpacking is trivial set breakpoints on POPAD, RET, run and dump […]
  • Backdoor.Win32.JustJoke.21 (BackDoor Pro) / Unauthenticated Remote Command Execution September 6, 2024
    Posted by malvuln on Sep 05Discovery / credits: Malvuln (John Page aka hyp3rlinx) (c) 2024 Original source: https://malvuln.com/advisory/4dc39c05bcc93e600dd8de16f2f7c599.txt Contact: malvuln13 () gmail com Media: x.com/malvuln Threat: Backdoor.Win32.JustJoke.21 (BackDoor Pro - v2.0b4) Vulnerability: Unauthenticated Remote Command Execution Family: JustJoke Type: PE32 MD5: 4dc39c05bcc93e600dd8de16f2f7c599 SHA256:...

Customers

Newsletter

{subscription_form_1}